Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 700
Filtrar
1.
Foods ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611308

RESUMEN

The relationship between the chemical structures of six flavonoids and their abilities to inhibit the formation of polycyclic aromatic hydrocarbons (PAHs) in a heated meat model system was investigated. The PAH8 forming in samples was analyzed by using QuEChERS coupled GC-MS. Inhibitory effects of PAHs were myricetin (72.1%) > morin (55.7%) > quercetin (57.3%) > kaempferol (49.9%) > rutin (32.7%) > taxifolin (30.2%). The antioxidant activities of these flavonoids, assessed through (1, 1-diphenyl-2-picrylhydrazyl) free radical scavenging activity assay (DPPH), [2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)] free radical scavenging activity assay (ABTS) and ferric ion reducing antioxidant power assay (FRAP) assays, exhibited a significant negative correlation with PAH reduction. Notably, myricetin that contained three hydroxyl groups on the B-ring, along with a 2,3-double bond in conjugation with a 4-keto moiety on the C-ring, demonstrated strong antioxidant properties and free radical scavenging abilities, which significantly contributed to their ability to inhibit PAH formation. However, rutin and taxifolin, substituted at the C-3 position of the C-ring, decreased the PAH inhibitory activity. The ABTS assay proved the most effective in demonstrating the correlation between flavonoid antioxidant properties and their capacity to inhibit PAH formation in heated meat model systems. Thus, the inhibition of PAHs can be achieved by dietary flavonoids according to their chemical structures.

2.
Food Chem ; 448: 138575, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604110

RESUMEN

Quinoa sprouts are a green vegetable rich in bioactive chemicals, which have multiple health benefits. However, there is limited information on the overall metabolic profiles of quinoa sprouts and the metabolite changes caused by saline-alkali stress. Here, a UHPLC-MS/MS-based widely targeted metabolomics technique was performed to comprehensively evaluate the metabolic profiles of quinoa sprouts and characterize its metabolic response to saline-alkali stress. A total of 930 metabolites were identified of which 232 showed significant response to saline-alkali stress. The contents of lipids and amino acids were significantly increased, while the contents of flavonoids and phenolic acids were significantly reduced under saline-alkali stress. Moreover, the antioxidant activities of quinoa sprouts were significantly affected by saline-alkali stress. The enrichment analysis of the differentially accumulated metabolites revealed that flavonoid, amino acid and carbohydrate biosynthesis/metabolism pathways responded to saline-alkali stress. This study provided an important theoretical basis for evaluating the nutritional value of quinoa sprouts and the changes in metabolites in response to saline-alkali stress.


Asunto(s)
Álcalis , Chenopodium quinoa , Flavonoides , Valor Nutritivo , Chenopodium quinoa/química , Chenopodium quinoa/metabolismo , Chenopodium quinoa/crecimiento & desarrollo , Álcalis/química , Álcalis/metabolismo , Flavonoides/metabolismo , Flavonoides/análisis , Flavonoides/química , Cromatografía Líquida de Alta Presión , Antioxidantes/metabolismo , Antioxidantes/química , Metabolómica , Espectrometría de Masas en Tándem , Aminoácidos/metabolismo , Aminoácidos/análisis , Estrés Fisiológico
3.
Food Sci Nutr ; 12(4): 2393-2407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628218

RESUMEN

To investigate the potential functional properties and added value of okra seed oil and provide a scientific basis for further industrial development and production of okra seed oil, its fatty acid profile, total phenolic, fat-soluble vitamin composition, mineral element composition, and antioxidant activities were examined in this study. Also, correlations between bioactive components and the antioxidant activities of okra seed oil were explored. The study results show that okra seed oil contains 12 types of fatty acids, 65.22% of which are unsaturated acids, and among these unsaturated acids, linoleic acid (43%) and oleic acid (20.16%) are two dominant acid types. Compared with walnut oil and peanut oil, okra seed oil contains relatively high total phenols, fat-soluble vitamins, and a variety of essential mineral nutrients, with a total phenolic content (TPC) of 959.65 µg/mL, a total tocopherol content of 742.71 µg/mL, a vitamin A content of 0.0017 µg/100 mL, a vitamin D content of 1.44 µg/100 mL, and a vitamin K1 content of 52.54 ng/100 mg. Also, okra seed oil exhibits better scavenging activities on hydroxyl (IC50 = 0.50 mg/mL) and ammonium salt (ABTS) free radicals (IC50 = 6.46 mg/mL) and certain reducing power (IC50 = 17.22 mg/mL) at the same concentration. The scavenging activities of okra seed oil on hydroxyl radicals and ABTS radicals, as well as its reducing power, are significantly correlated with its contents of total phenol, total tocopherol, α-tocopherol, and γ-tocopherol (p < .01). These results show that okra seed oil is rich in bioactive substances, thus presenting great nutritional potential.

4.
Foods ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611292

RESUMEN

This study aims to investigate the positive effects of ultra-high pressure assisted acid extraction (UPAAE) on both physicochemical properties and antioxidant activities of hawthorn pectin. The basic indicators, structure characterization, and antioxidant activities were measured, which could indicate the disadvantages and advantages among traditional water extraction (WE), acid extraction (AE), and UPAAE. The results show that the hawthorn pectin of UPAAE has a decrease in esterification degree, protein content, and total polyphenols, but has an increase in total galacturonic acid aldehyde compared to the hawthorn pectin of AE. In the Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) analyses, the hawthorn of UPAAE has typical pectin absorption peaks in the FT-IR spectrum and a distinct layered structure in the SEM surface image. The ion chromatography profiles show that the molar ratio of galacturonic acid to arabinose in the hawthorn pectin of UPAAE increases and 5.50 µg/mg ribose appears compared to the pectin of AE and WE. The high performance gel permeation chromatography (HPGPC) profile indicates that the molecular weight distribution of hawthorn pectin of UPAAE is more concentrated and has the highest molecular weight compared to the pectin of the other two extraction methods. In the vitro antioxidant activity analysis, the pectin of UPAAE exhibits the highest scavenging rate against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (93.70%), which is close to the scavenging rate of vitamin C (96.30%). These findings demonstrated that UPAAE is a more efficient and environmentally friendly method for pectin extraction from hawthorn. It is also an effective way to enhance its antioxidant activity, which has great application prospects in the food industries.

5.
Food Res Int ; 184: 114262, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609241

RESUMEN

There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.


Asunto(s)
Ácido Acético , Antioxidantes , Ácido Clorogénico , Ácido Gálico , Polifenoles
6.
Nat Prod Res ; : 1-5, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613231

RESUMEN

Camelina sativa (L.) Crantz is an oilseed plant common in Europe and Asia. This study used the gas chromatography-mass spectrometry (GC-MS) to examine the differences in the aroma on the basis of extraction method such as water distillation extraction (CSPW), Solid-phase microextraction (CSPM) and subcritical extraction (CSPS). Antibacterial test was evaluated by the microdilution method against Salmonella typhimurium, Streptococcus pneumoniae, Escherichia coli, Strepococcus pyogenens, Staphylococcus aureus, and antioxidant activity was determined through DPPH free radical, hydroxyl free radical, and superoxide anion radical scavenging capacity activity. The result revealed that three extraction methods were distinct from each other based on their volatile compounds. Sixty-one volatiles of diverse chemical nature were identified and quantified. The volatile components contain thioether, aldehydes, alcohols, ketones, acids, esters, alkene, alkanes, amide, and furan compounds. The volatile components of Camelina sativa (L.) Crantz have good antibacterial and antioxidant activities. Furthermore, this work provides reference methods for detecting novel volatile organic compounds in plants and products.

7.
BMC Complement Med Ther ; 24(1): 167, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649994

RESUMEN

Tanacetum falconeri is a significant flowering plant that possesses cytotoxic, insecticidal, antibacterial, and phytotoxic properties. Its chemodiversity and bioactivities, however, have not been thoroughly investigated. In this work, several extracts from various parts of T. falconeri were assessed for their chemical profile, antioxidant activity, and potential for enzyme inhibition. The total phenolic contents of T. falconeri varied from 40.28 ± 0.47 mg GAE/g to 11.92 ± 0.22 mg GAE/g in various extracts, while flavonoid contents were found highest in TFFM (36.79 ± 0.36 mg QE/g extract) and lowest (11.08 ± 0.22 mg QE/g extract) in TFSC (chloroform extract of stem) in similar pattern as found in total phenolic contents. Highest DPPH inhibition was observed for TFFC (49.58 ± 0.11 mg TE/g extract) and TFSM (46.33 ± 0.10 mg TE/g extract), whereas, TFSM was also potentially active against (98.95 ± 0.57 mg TE/g) ABTS radical. In addition, TFSM was also most active in metal reducing assays: CUPRAC (151.76 ± 1.59 mg TE/g extract) and FRAP (101.30 ± 0.32 mg TE/g extract). In phosphomolybdenum assay, the highest activity was found for TFFE (1.71 ± 0.03 mg TE/g extract), TFSM (1.64 ± 0.035 mg TE/g extract), TFSH (1.60 ± 0.033 mg TE/g extract) and TFFH (1.58 ± 0.08 mg TE/g extract), while highest metal chelating activity was recorded for TFSH (25.93 ± 0.79 mg EDTAE/g extract), TFSE (22.90 ± 1.12 mg EDTAE/g extract) and TFSC (19.31 ± 0.50 mg EDTAE/g extract). In biological screening, all extracts had stronger inhibitory capacity against AChE while in case of BChE the chloroform extract of flower (TFFC) and stem (TFSC) showed the highest activities with inhibitory values of 2.57 ± 0.24 and 2.10 ± 0.18 respectively. Similarly, TFFC and TFSC had stronger inhibitory capacity (1.09 ± 0.015 and 1.08 ± 0.002 mmol ACAE/g extract) against α-Amylase and (0.50 ± 0.02 and 0.55 ± 0.02 mmol ACAE/g extract) α-Glucosidase. UHPLC-MS study of methanolic extract revealed the presence of 133 components including sterols, triterpenes, flavonoids, alkaloids, and coumarins. The total phenolic contents were substantially linked with all antioxidant assays in multivariate analysis. These findings were validated by docking investigations, which revealed that the selected compounds exhibited high binding free energy with the enzymes tested. Finally, it was found that T. falconeri is a viable industrial crop with potential use in the production of functional goods and nutraceuticals.

8.
Chem Biodivers ; : e202400141, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573801

RESUMEN

Ultrasound extraction (UE) enhanced with deep eutectic solvent (DES) was used to extract Lentinus edodes polysaccharides. Box-Behnken design (BBD) was applied to investigate the influences of water content (10-90 %), solid-liquid solvent (1 : 10-1 : 50 g/mL), time (4-12 min), temperature (40-80 °C) and ultrasonic power (100-500 W) on the yield of Lentinus edodes polysaccharides. The optimal extraction conditions were ultrasonic power of 300 W, extraction time of 8 min, water content of 80 %, a solid-liquid ratio of 1 : 30 g/mL and a temperature of 60 °C, respectively. The highest extraction yield of Lentinus edodes polysaccharide was 10.17 % under optimal conditions. The results of FT-IR, SEM, and monosaccharide composition confirmed that the extracts possessed the characteristics of polysaccharides. In addition, the polysaccharides obtained with the UE enhanced with DES method exhibited higher antioxidant activities than the polysaccharides extracted with the UE method and HWE method. This extraction method can further expand the production efficiency and structural diversity of Lentinus edodes polysaccharides and meet the supply and demand relationship. It can be foreseen that this method can be applied to the extraction of more active substances.

9.
Int J Biol Macromol ; 267(Pt 1): 131385, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582477

RESUMEN

In this study, we extracted the polysaccharides from C. militaris fruiting bodies (CFIPs), mycelial intracellular polysaccharides (CMIPs), and fermentation broth extracellular polysaccharides (CFEPs) to investigate their physicochemical properties, antioxidant capacities, and effects on oxazolone-induced zebrafish ulcerative colitis (UC). Our results revealed differences in monosaccharide composition and surface structure among CFIPs, CMIPs, and CFEPs. The molar ratios of glucose to mannose in CFIPs, glucose to xylose in CMIPs, and xylose to glucose in CFEPs were 7.57: 1.6, 7.26: 1.81, and 5.44: 2.98 respectively. Moreover, CFEPs exhibited significantly (p < 0.05) higher chemical antioxidant capacity compared to CMIPs and CFIPs. Surprisingly, CFEP treatment didn't show a significant effect in protecting against H2O2-induced oxidative damage in RAW 264.7 cells. After 3 d of treatment, the levels of ROS, MDA, and MPO in the CFIPs group exhibited a significant (p < 0.05) reduction by 37.82 %, 68.15 %, and 22.77 % respectively. Additionally, the ACP and AKP increased by 60.33 % and 96.99 %. Additionally, C. militaris polysaccharides (CMPs) were found to effectively improve UC by activating the MyD88/NF-κB signaling pathway in vivo. These findings confirm the distinct physicochemical properties of these three types of CMP and their potential for development into antioxidant-rich anti-inflammatory health foods.

10.
Food Chem X ; 22: 101294, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38550887

RESUMEN

To accurately, efficiently, and environmentally prepare carrageenan oligosaccharides, we have developed a method that uses H2O2 and TiO2 as catalysts for the photodegradation of κ-carrageenan (KC). The photodegradation of KC was monitored using various amounts of TiO2 and H2O2 and different concentrations of KC via HPLC and it could decrease the average molecular weight of KC into 1.6 kDa within 2 h. Further research under optimal conditions. As a control, the effects of UV, UV/H2O2, UV/TiO2, and H2O2/TiO2 treatments were studied. In contrast, UV/H2O2/TiO2 treatments showed a coordinated effect. The effect of degradation on the structure of KC was investigated by FT-IR, XRD, and there was no obvious remotion of sulfate groups. Furthermore, oral administration of KCO prolonged the healthy lifespan of nematodes induced by ultraviolet stress and significantly regulated oxidative stress. This study suggests that the precise preparation and application of KCO may be beneficial.

11.
J Agric Food Chem ; 72(12): 6339-6346, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488910

RESUMEN

There are many complications of type 2 diabetes mellitus. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two complications related to the increased lipid accumulation in the liver. Previous studies have shown that mulberry leaf water extract (MLE) has the effect of lowering lipid levels in peripheral blood, inhibiting the expression of fatty acid synthase (FASN) and increasing the activity of liver antioxidant enzymes superoxide dismutase (SOD) and catalase. Our study aimed to investigate the role of MLE and its main component, neochlorogenic acid (nCGA), in reducing serum lipid profiles, decreasing lipid deposition in the liver, and improving steatohepatitis levels. We evaluated the antioxidant activity including glutathione (GSH), glutathione reductase (GRd), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide dismutase (SOD), and catalase was tested in mice fed with MLE and nCGA. The results showed a serum lipid profile, and fatty liver scores were significantly increased in the HFD group compared to the db/m and db mice groups, while liver antioxidant activity significantly decreased in the HFD group. When fed with HFD + MLE or nCGA, there was a significant improvement in serum lipid profiles, liver fatty deposition conditions, steatohepatitis levels, and liver antioxidant activity compared to the HFD group. Although MLE and nCGA do not directly affect the blood sugar level of db/db mice, they do regulate abnormalities in lipid metabolism. These results demonstrate the potential of MLE/nCGA as a treatment against glucotoxicity-induced diabetic fatty liver disease in animal models.


Asunto(s)
Ácido Clorogénico/análogos & derivados , Diabetes Mellitus Tipo 2 , Morus , Enfermedad del Hígado Graso no Alcohólico , Ácido Quínico/análogos & derivados , Ratones , Animales , Catalasa/metabolismo , Morus/metabolismo , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Lípidos/farmacología , Hojas de la Planta/metabolismo , Ratones Endogámicos C57BL
12.
Environ Sci Pollut Res Int ; 31(17): 25616-25636, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38478307

RESUMEN

The increasing interest in utilizing olive pomace bioactive molecules to advance functional elements and produce antioxidant and antimicrobial additives underscores the need for eco-friendly extraction and purification methods. This study aims to develop an eco-friendly extraction method to evaluate the effect of extraction parameters on the recovery of bioactive molecules from enriched olive pomace. The effects were identified based on total phenolic and flavonoid contents and antioxidant activity, employing a design of experimental methodology. The positive and the negative simultaneous effects showed that among the tested enrichments, those incorporating Nigella Sativa, dates, and coffee demonstrated superior results in terms of the measured responses. Furthermore, chromatographic analysis unveiled the existence of intriguing compounds such as hydroxytyrosol, tyrosol, and squalene in distinct proportions. Beyond this, our study delved into the structural composition of the enriched pomace through FTIR analysis, providing valuable insights into the functional groups and chemical bonds present. Concurrently, antimicrobial assays demonstrated the potent inhibitory effects of these enriched extracts against various microorganisms, underscoring their potential applications in food preservation and safety. These findings highlight enriched olive pomace as a valuable reservoir of bioactive molecules for food products since they can enhance their anti-oxidative activity and contribute to a sustainable circular economy model for olive oil industries.


Asunto(s)
Antiinfecciosos , Olea , Olea/química , Antioxidantes/farmacología , Fenoles/análisis , Aceite de Oliva/química , Antibacterianos
13.
Molecules ; 29(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474563

RESUMEN

Aeginetia indica L., a parasitic root in the Orobanchaceae family, is used as a food colorant in traditional Thai desserts. However, scant information is available on its food applications as well as medicinal properties, while overharvesting by the local people has severely depleted wild plant populations. This research, thus, aimed to extract optimized total phenolic content (TPC) in varying extraction conditions using response surface methodology (RSM) and the Box-Behnken design (BBD). Results indicated that an extraction temperature of 90 °C, 80% (v/v) aqueous ethanol, and 0.5% (w/v) solid-to-liquid ratio yielded the highest TPC at 129.39 mg gallic acid equivalent (GAE)/g dry weight (DW). Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified the predominant phenolics as apigenin (109.06 mg/100 g extract) and luteolin (35.32 mg/100 g extract) with trace amounts of naringenin and rutin. Under the optimal extraction condition, the plant extract exhibited antioxidant activities of 5620.58 and 641.52 µmol Trolox equivalent (TE)/g DW determined by oxygen radical absorbance capacity (ORAC) and ferric ion reducing antioxidant power (FRAP) assay, while the scavenging capacity of total radicals at 50% (SC50) was determined to be 135.50 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The plant extract also exhibited inhibitory activities against the key enzymes relevant to type II diabetes, obesity, and Alzheimer's disease, suggesting the potential for medicinal applications.


Asunto(s)
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/química , Espectrometría de Masas en Tándem , Extractos Vegetales/química , Rutina
14.
Environ Sci Pollut Res Int ; 31(15): 23262-23282, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418790

RESUMEN

This study investigated the effect of heavy metals on the pearl oyster Pinctada radiata from 5 sites along the coast of Alexandria, with focus on its ecological health and potential risks to human consumption. Pollution results showed that Abu-Qir had the highest Cu and Cd values. Montaza and Eastern Harbor had the highest Fe and Pb values, respectively. Statistically, differences in metal concentrations among study sites were significant (p < 0.05). Non-carcinogenic risk (TTHQ) of tested metals and carcinogenic ones of Cd and Pb showed "high risk" on human health by consuming pearl oysters. Morphometric measurements and condition indices were studied to assess growth patterns and health in relation to heavy metals exposure. Key findings showed detectable declines in size and condition index in Eastern Harbor, whereas Abu-Qir recorded the highest values. This condition index performance presented Abu-Qir, Mammora, and Miami as ideal locations for spat collection and oyster rearing, potentially enhancing Egyptian pearl farming. Average values of spatial proximate contents of pearl oyster showed that it was rich in proteins (33.07-58.52%) with low fat content (1.39-1.87%) and carbohydrates (9.72-17.63%). Biochemical composition of pearl oyster demonstrated its high nutritional value which supported its promotion as a functional food for human consumption. The calorie content of pearl oyster was less than 2 Kcal, making this species an alternative source of healthy food to reduce obesity. Regression analysis indicated that Cu, Cd, and Pb had significant effect on 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, calories, vitamins, and pigment content of the collected oysters.


Asunto(s)
Metales Pesados , Ostreidae , Pinctada , Animales , Humanos , Pinctada/metabolismo , Cadmio/análisis , Plomo/análisis , Metales Pesados/análisis , Ostreidae/química , Medición de Riesgo , Biometría , Monitoreo del Ambiente
15.
Foods ; 13(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38397559

RESUMEN

Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf curries are famous Thai food dishes with a good harmony of flavor and taste, derived from multiple herbs and spices, including galangal rhizomes, chili pods, garlic bulbs, peppers, shallots, and coriander seeds, that provide an array of health benefits. The characterization of phytochemicals detected by LC-ESI-QTOF-MS/MS identified 99 components (Masaman) and 62 components (spicy basil leaf curry) such as quininic acid, hydroxycinnamic acid, luteolin, kaempferol, catechin, eugenol, betulinic acid, and gingerol. The cynaroside and luteolin-7-O-glucoside found in spicy basil leaf curry play a key role in antioxidant activities and were found at a significantly higher concentration than in Massaman curry. Phenolic and flavonoid compounds generally exhibit a bitter and astringent taste, but all the panelists scored both curries higher than 7 out of 9, confirming their acceptable flavor. Results suggest that the Massaman and spicy basil leaves contain various phytochemicals at different levels and may be further used as functional ingredients and nutraceutical products.

16.
Molecules ; 29(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398569

RESUMEN

In this study, Asparagus stipularis was characterized concerning its phytochemical composition, antioxidant potential, cytotoxicity, and pancreatic lipase inhibitory activities. Twenty-seven compounds were identified and quantified by HPLC-DAD-MS in the leaf, stem, pericarp, and rhizome of ethanolic extracts. Seven steroidal saponins were detected, and the highest content was quantified in rhizome and pericap. A. stipularis also contained significant amounts of flavonoids in the aerial part. Isorhamnetin tetra-glycoside, quercetin-3-glucosyl-rutinoside, and rutin were the main flavonoid derivatives in leaf, stem, and pericarp extracts, respectively. In addition, eleven phenolic acids were also detected; among them, caffeic acid, protocatechuic acid, p-hydroxybenzoic acid, and ferulic acid were the predominant phenolics, with these having the highest amounts quantified in the rhizome extracts. All the tested extracts possessed antioxidant capacities, with pericarp and rhizome extracts exhibiting the highest activity in DPPH, ABTS, and FRAP assays. The extracts from pericarp and rhizome were revealed to also be the strongest inhibitors of pancreatic lipase. The rhizome extracts exhibited potent cytotoxic activity against HCT-116 and HepG2 with IC50 values of 30 and 54 µg/mL after 48 h of treatment. The present study demonstrated that A. stipularis can be used as a new source of natural antioxidants and potential anticancer and antiobesity compounds.


Asunto(s)
Antioxidantes , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flavonoides/química , Rutina , Fitoquímicos/farmacología , Lipasa
17.
Phytochem Anal ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369344

RESUMEN

INTRODUCTION: The species Lantana camara is used in folk medicine. The biological activities of this medicinal plant are attributable to the presence of various derivatives of triterpenoids and phenolic compounds present in its preparations, indicating excellent economic potential. OBJECTIVE: In this study, the operational conditions of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were optimized using Box-Behnken design to improve the total phenolic content (TPC) recovered in hydroethanolic extracts of L. camara leaves. MATERIAL AND METHODS: The TPC, total flavonoid content (TFC), and antioxidant activities of the hydroalcoholic extracts of L. camara, prepared by UAE and MAE under the optimized extraction conditions, were compared with those of the extracts obtained by conventional extraction methods. RESULTS: Under the optimal conditions, the extracts obtained by UAE (35% ethanol, 25 min, and a solvent-to-solid ratio of 60:1 mL/g) and by MAE (53% ethanol, 15 min, and 300 W) provided high yields of 32.50% and 38.61% and TPC values of 102.89 and 109.83 mg GAE/g DW, respectively. The MAE extract showed the best results with respect to TPC, TFC, and antioxidant activities, followed by extracts obtained by UAE, Soxhlet extraction, decoction, maceration, and infusion, in that order. CONCLUSION: The results obtained indicate that L. camara may be used as an important source of antioxidant phenolic compounds to obtain products with high biological and economic potential, especially when the extraction process is performed under appropriate conditions using MAE and/or UAE, employing environmentally friendly solvents such as water and ethanol.

18.
Int J Biol Macromol ; 263(Pt 1): 130412, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401577

RESUMEN

The purpose of this study was to compare and characterize the theoretical properties and interaction mechanisms of zein and isoquercetin (ISO) from experimental and theoretical perspectives. Zein nanoparticles with different ISO concentrations (ZINPs) were prepared by the antisolvent precipitation method. The experimental results indicated all particles appeared spherical. When the mass ratio of zein to ISO was 10:1, the encapsulation efficiency of ZINPs reached 88.19 % with an average diameter of 126.67 nm. The multispectral method and molecular docking results confirmed that hydrogen bonding and van der Waals force played a dominant role for the binding of ISO to zein, and the primary fluorescence quenching mechanism for zein by ISO was static quenching. Furthermore, ZINPs had greater solubility and antioxidant activity, as well as inhibited the release of ISO during simulated gastrointestinal digestion processes. This research contributes to the understanding of the non-covalent binding mechanism between zein and ISO, providing a theoretical basis for the construction of ISO active carriers.


Asunto(s)
Nanopartículas , Quercetina/análogos & derivados , Zeína , Antioxidantes/farmacología , Zeína/química , Simulación del Acoplamiento Molecular , Tamaño de la Partícula , Nanopartículas/química
19.
Phytochem Anal ; 35(3): 586-598, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263361

RESUMEN

INTRODUCTION: The seeds of Plantago asiatica L., a folk herb, are rich in polysaccharides that possess antioxidant, antidiabetic, and anti-inflammatory properties. Polysaccharides with lower molecular weights generally exhibit higher biological activity, so a method to efficiently extract low-molecular-weight polysaccharides from P. asiatica L. seeds (PLPs) is needed. OBJECTIVES: The aim was to establish an efficient method for extracting polysaccharides from P. asiatica L. seeds while preserving their activity. MATERIALS AND METHODS: Response surface methodology was applied to determine the optimal polysaccharide extraction conditions. Subsequently, the extracted polysaccharides were characterized to determine their monosaccharide composition, physicochemical properties, and molecular weight. Their antioxidant activity was evaluated by measuring their ability to scavenge DPPH and ABTS free radicals. RESULTS: An extraction yield of 9.17% was achieved under an ethanol concentration of 18.0% (w/w), a K2HPO4 concentration of 27.8% (w/w), a solvent-to-material ratio of 30:1 (mL/g), an ultrasound power of 203 W, and an extraction time of 39 min. Structural analyses indicated that this method might cause physicochemical changes in the conformation of PLPs and induce the degradation of PLP side chains but not the backbone. The antioxidant assay results showed that the DPPH and ABTS radical scavenging rates of PLPs were 48.3% and 49.2%, respectively, while in the control group the radical scavenging rates were 35.5% and 37.1%, respectively. CONCLUSION: The established method for extracting polysaccharides from P. asiatica L. seeds is efficient and reliable. The polysaccharides could be used as an important resource with antioxidant activity.


Asunto(s)
Antioxidantes , Benzotiazoles , Plantago , Ácidos Sulfónicos , Antioxidantes/química , Plantago/química , Plantago/metabolismo , Etanol , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/metabolismo , Semillas/química
20.
J Food Sci ; 89(2): 834-850, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38167751

RESUMEN

Lactic acid fermentation is an effective method for improving the quality of black chokeberry. This study aimed to investigate the influence of lactic acid bacteria on the phenolic profile, antioxidant activities, and volatiles of black chokeberry juice. Initially, 107  cfu/mL of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lacticaseibacillus rhamnosus were inoculated into pasteurized black chokeberry juice and fermented for 48 h at 37°C. All these strains enhanced the total phenolic and total flavonoid contents, with La. acidophilus showing the highest total phenolic (1683.64 mg/L) and total flavonoid (659.27 mg/L) contents. Phenolic acids, flavonoids, and anthocyanins were identified using ultrahigh-performance liquid chromatography-tandem mass spectrometry. The prevalent phenolic acid, flavonoid, and anthocyanin in the lactic-acid-fermented black chokeberry juice were cinnamic acid, rutin, and cyanidin-3-O-rutinoside, respectively. Furthermore, following fermentation, the DPPH and ABTS scavenging capacity, as well as the reducing power capacity, increased from 59.98% to 92.70%, 83.06% to 94.95%, and 1.24 to 1.82, respectively. Pearson's correlation analysis revealed that the transformation of phenolic acids, flavonoids, and anthocyanins probably contributed to enhancing antioxidant activities and color conversation in black chokeberry juice. A total of 40 volatiles were detected in the fermented black chokeberry juice by gas chromatography-ion mobility spectrometry. The off-flavor odors, such as 1-penten-3-one and propanal in the black chokeberry juice, were weakened after fermentation. The content of 2-pentanone significantly increased in all fermented juice, imparting an ethereal flavor. Hence, lactic acid fermentation can effectively enhance black chokeberry products' flavor and prebiotic value, offering valuable insights into their production. PRACTICAL APPLICATION: The application of lactic acid bacteria in black chokeberry juice not only enhances its flavor but also improves its health benefits. This study has expanded the range of black chokeberry products and offers a new perspective for the development of the black chokeberry industry.


Asunto(s)
Lactobacillales , Photinia , Antioxidantes/química , Antocianinas , Ácido Láctico/análisis , Photinia/química , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Fenoles/análisis , Flavonoides , Lactobacillus acidophilus/metabolismo , Lactobacillales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...